
NITCbase
A relational database management system

Prepared by Cliford Joshy

Some DBMS theory

● Relational Database – collection of persistent data, organized into tables.
● Relational Database Management System (DBMS) – software system that

supports creation, population, and querying on a relational database
● Relational Database Management System (RDBMS)

○ Data is organized into tables, also known as relations.
○ A table is a collection of rows (called records or tuples). Each row represents a data entity.
○ Each tuple can have a number of subfields, called columns (or fields or attributes).
○ Columns define the names and types of the data in each of the subfields of a row.
○ The number of columns per tuple is fixed for a given table.

The relation Students(id, name, gpa) is
shown here.

● id, name and gpa are the
attributes of the relation.

● The relation has 4 tuples
corresponding to 4 students.

● The value corresponding to a
particular attribute is of the
same type in every record. That
is, every id is an integer, every
name is a string and so on.

id name gpa

5001 Dave 9.4

5002 Tina 8.6

5003 Alan 7

5004 Anne 9.1

What is NITCbase?

NITCbase is an elementary RDBMS with minimal features. It is designed to help
you understand the working of a DBMS by implementing one yourself.

The design of the system simplifies tedious implementation work by proposing
some core abstractions. The design and the core algorithms are given to you.

The NITCbase design is object-oriented.

Abstractions

● Only two types of data are allowed; NUMBER and STRING.
○ Both types are fixed to have a size of 16 bytes

● All the data is stored in a simulated disk environment
○ The “disk” contains 8192 blocks with each block having a size of 2048 bytes.
○ The entire space occupied by data in NITCbase cannot exceed 16 MB

● All DB queries happen exclusively through command line interfaces made
available to the user.

A high level look at what your
database will do.

SELECT * FROM Students INTO
9_Students WHERE gpa > 9

NITCbase

id name gpa

5001 Dave 9.4

5004 Anne 9.1

9_students

Components of the
Project

1. NITCbase
2. XFS Interface

NITCbase

● Frontend Interface: parses
high level commands from
the user. Provided to you.

● Disk Interface : Methods to
read/write data blocks to
the disk. Provided to you.

● Database Backend:
Implements the
functionality. For you to do

XFS Interface

● An external interface to the
disk.

● A full implementation of
NITCbase functionality -
Fully implemented and
given to you.

● All database operations
can be performed from
your host machine.

● Provided to aid you in your
own implementation.

What is on the disk?

● The NITCbase design treats a block on the XFS disk in one of two ways;
either a record block or an index block.

● A record block stores the data (raw tuples corresponding of each relation).
● An index block stores information that facilitates the efficient access of

data blocks during search queries on the database.
● There are also reserved blocks (storing relation catalog /attribute catalog /

disk free list) used to store metadata relating to relations and the disk
itself.

NITCbase design

NITCbase has an eight layer design where each layer implements some subset of the requirements
using lower layer functionality. The layers are as follows:

1. Frontend Interface: parses high level commands and invokes Algebra/Scheme layer functions.
2. Algebra Layer: handles algebraic operations (select, project and join queries).
3. Schema Layer: handles schema operations (create/delete/rename relations)
4. Block Access Layer: handles common disk block access operations (tuple insertion, search)
5. B+ Tree Layer: handles all indexing operations for efficient data access and retrieval.
6. Cache Layer: handles relation metadata caching (cache of open relations, catalogs etc.)
7. Buffer Layer: handles low level buffering of disk blocks for efficient disk data access
8. Physical Layer: handles abstractions for disk access.

High Level
Interactions

● Each layer uses the
methods made available by
the lower layers to
implement it’s
functionality.

● Implementing the 6 layers
between the Frontend
Interface and the Physical
Layer is your task.

● These layers comprise the
core functionality of a
relational DBMS

Good Luck!

Pictured on the right is every
major function and the calls
between them that you will have
implemented by the end of this
project

Proceed to:

https://nitcbase.github.io

https://nitcbase.github.io

